CHAPTER TWELVE

Nursing Sensitive Outcome Indicators

Esther Y H Wong, L S Chau, K Y Yu, Rowlina P W Leung, Peter C K Lai, Joanna W P Lo, S F Lee

LEARNING OUTCOMES

After completing this chapter you will be able to:

- Identify the characteristics of nursing sensitive outcome indicators
- Review the definitions of fall, displacement of tubes/lines/drains and medication incidents
- Understand the risk factors of falls in intensive care
- Highlight strategies of fall prevention
- Discuss recommendations for minimizing the chance of displacement of tube/line/drains
- Explain the types and causes of medication errors in intensive care unit
- Discuss strategies for improving medication safety
- Identify evidence-based interventions that are effective in enhancing patient and family satisfaction
- Discuss the role of the nurse in promoting improved care in the ICU using nursing sensitive outcome indicators

INTRODUCTION

The dawn of the twenty-first century marks a new era for the entire nursing profession. To keep pace with the ageing population; advanced technology; rising public expectation; escalating healthcare costs; and the advent of modern medicine; coupled with the need to achieve improvement in healthcare quality and safety, clinical nurses, and nurse executives are increasingly concerned about measuring the outcomes of care in their workplace and gathering evidence to justify their decisions for resources allocation. The growing sophistication of the health care systems everywhere calls for an increased emphasis on evidence and outcomes. Gallagher and Rowell (2003) opined that:

The provision of outcome-oriented, cost-effective health care is no longer a goal. It is a mandate. To accomplish this mandate, the relationship between the costs, quality and desired outcomes of care, and the processes involved in providing care must be reexamined.

Successful indicators that capture nursing-sensitive patient outcomes tie together research findings and best practices in an effort to create better patient care.

What are nursing sensitive outcome/quality indicators?

The American Nurses Association (ANA, 1996) defined nursing-sensitive quality indicators as those indicators that capture care or are most affected by nursing care. The use of nurse sensitive quality indicators in Intensive Care Units (ICU) has been as a tool to show the clear linkages between nursing interventions, staffing levels, and positive patient outcomes.

Nursing sensitive quality indicators (NSQIs) and nursing sensitive outcomes indicators (NSOIs) are referring to the same thing - patient outcomes that are directly or indirectly influenced by nursing (Dorman, 1977).

In 1998, the ANA funded the development of a national database named as the National Database of Nursing Quality Indicators (NDNQI). Its goals are to promote and facilitate the standardization of information submitted by hospitals across the United States on nursing quality and patient outcomes. Yang et al. (1999) defined NSOI as:

changes in health status upon which nursing care has had a direct influence.

The International Council of Nurses (ICN, 2001) stated it is ...

... the measure or status of a nursing diagnosis at points in time after a nursing intervention. Nursing-sensitive indicators are specific to nursing and differ from medical indicators of care quality. As such, nursing outcomes indicators are those outcomes most influenced by nursing care (Montalvo, 2007).

NDNQI began formally collecting data related to ten NSQIs for acute care settings including:

- Total nursing care hours provided per patient day
- Mix of RNs, LPNs and unlicensed staff caring for patients in acute care settings
- Pressure ulcers (terminology in 2015)
- Nursing staff satisfaction
- Nosocomial infection rate (bacteremia’s associated with central lines)
- Patient falls
- Patient satisfaction with overall care
- Patient satisfaction with educational information
- Patient satisfaction with pain management
- Patient satisfaction with nursing care.

(Nursing Administration Quarterly 2003; Nursing World, ANA Indicator History, 2015)

The recommended definitions of the ten indicators can be found in ANA's 2015 publication. In this chapter fall displacement of tubes/lines/drains; medication incidents and patient/family satisfaction and related indicators will be discussed as it relates to critical care nursing.

The Joint Commission started incorporating NSOIs into its standards for accreditation. Nowadays, nursing-sensitive indicators are widely used. As an example of how NSOI can be used to monitor nursing impact, data collection for NSOIs in ICUs started in 2005 in Hong Kong. Currently fifteen ICUs in public hospitals (at Level II and above) in Hong Kong contribute to this database. Hong Kong established a set of Specialty Guidelines for ICU nurses in which service indicators were listed as follows:

Patient-focused outcome indicators listed in the Specialty (ICU) Guidelines:

Treatment/care modality indicators:

- Adverse Incident rates such as medication incident rate, patient fall rate and displacement of tubes; complications such as pressure injury rate and nosocomial infection rate; number of resuscitation episodes versus successful resuscitation rate.
Psychosocial indicators
- Knowledge level; satisfaction level; number of complaints; number of compliments.

General indicators
- Mortality rate; length of stay; unplanned readmission rate.

Tracking of the above-mentioned psychosocial indicators and general indicators has been conducted at the hospital level. Data collection has focused on seven NSOIs which are grouped under three categories:

Adverse incidents
- Patient falls
- Displacement of tubes, lines and drains
- Medication errors

Complications
- Pressure injury
- Nosocomial infection (see Chapter 10)

Patient and family satisfaction
- Patient and family’s satisfaction on the quality of care received.

We revisited the term nursing sensitive outcomes indicators; studied the topic in depth; confirmed and defined the indicators to be reported; devised NSOI formulas for calculating rates; devised reporting forms to capture data; designed a Training Need Analysis Tool and refined questionnaire for satisfaction survey (patient and family). Since early 2005, data on four NSOIs (patient falls, displacement of tubes, lines and drains, medication errors and pressure injury) were captured in ICUs (at departmental/unit level) and reported on a six-monthly basis. We aimed at capturing quality data for performance improvement and for presenting as a profile of ICU quality in the form of NSOIs because data collected can be used to compare among ICUs and to trend over time. Hospital-acquired infection (nosocomial infection) data were collected by the infection control unit and a satisfaction survey (patient/patient’s family) was conducted at the hospital level. Hence, an inventory of patient outcomes related to the scope of ICU nursing practice confirmed and data were collected at departmental level of all the public hospitals. Examples from this initiative are provided throughout this chapter to highlight the role of the critical care nurse in improving patient care in the ICU.

ACUTE CARE PATIENT FALL

NSOI definitions and measurements

Adverse incident: acute care patient fall

The World Health Organization (2018) describes “Fall” an event which results in a person coming to rest inadvertently on the ground or floor or other lower level. Jeffs et al. (2005) defined acute care patient fall as the rate per 1000 patient days at which patients experience an unplanned descent to the floor during the course of ICU stay. All falls (accidental fall, unanticipated physiologic fall, and anticipated physiologic fall) should be reported and described by level of injury or no injury. Falls resulting from violent blows or other purposeful actions should be excluded (US Department of Veterans Affairs, 2014).

The measure for the rate per 1,000 bed days occupied at which patients experience unplanned descent to the floor during the course of their hospital stays would be computed as:

- Numerator statement: total number of patients falls leading to injury or no injury \times 1000
- Denominator statement: total number of patient days during the period (total number of bed days occupied)

Categorization of falls

A patient fall is one of the major clinical risks in the health care setting. Patient falls have been recognized as a significant adverse event in hospitals. Falls can be categorized into 3 groups (U.S. Department of Veterans Affairs, 2014):

- Accidental fall is caused by environmental or extrinsic hazards that could result in a trip or slip, which can be prevented by ensuring environmental safety
- Anticipated physiologic fall is associated with intrinsic factors such as aging, altered mental state, unsteady gait and sensory deficits, which can be prevented by specific interventions after assessment
- Unanticipated physiologic fall is attributed to unexpected physiologic events including fainting, orthostatic hypotension, seizures or the use of sedatives and hypnotics. Although this type of fall cannot be predicted before the first occurrence, subsequent fall is preventable (Morse, 2008). Therefore, patient fall is not an inevitable event; it can be prevented when appropriate prevention strategies are implemented.

In the hospital setting, patient falls and fall-related injuries are associated with negative consequences on patients, relatives, as well as healthcare providers. Beyond physical injuries, patients may experience anxiety, loss of confidence and depression. Fall-related physical injuries can lead to the escalation of hospital cost. The costs may be due to extra diagnostic test, treatment for injuries, rehabilitation, and extension of the length of hospitalization (Flanders et al., 2009). Relatives may be anxious, leading to increased complaints and potential litigation. On the other hand, healthcare providers may also suffer from guilty feeling and shame on the failure of care (Patman et al. 2011). Thus, patient falls must be addressed as one of the quality-safety indicators for healthcare institutions, and the ICU.

Data reporting

Web-based electronic systems can be employed to facilitate the timely reporting, analysis and recommendation. The following information can be included in the fall incident report:

- Patient information, such as date of admission, diagnosis, and premorbid condition, such as conscious level and mobility
- Brief description of patient’s action during fall and the reason behind, such as patient’s cognitive and judgment problem, underlying medical condition, and patient’s condition before fall was underestimated
- Immediate consequence such as pain, superficial injury & fracture.
- Patient’s condition after a fall (nurse’s assessment and observation)
- Immediate management such as blood pressure checking, radiological investigation, dressing and inform relatives.

A set of comprehensive fall incident data are essential for conducting an effective root-cause-analysis (RCA).

Potential fall risks in intensive care units

The etiology of a fall is multi-factorial. Commonly identified risk factors for in-hospital patient falls include:
Nursing Sensitive Outcome Indicators

Intrinsic factors
- Age (extremes of age: 1-5 or > 65 years of age)
- Falls history
- Syncope syndrome
- Continence problems
- Cognitive impairment
- Postural instability, mobility problems and / or balance problems
- Sensory impairment
- Medication such as cardiovascular drugs, drugs used in central nervous system, or poly-pharmacy
- Communication problems
- Health problems that may increase their risk of fall

Extrinsic factors
- Slippery floor
- Inadequate lighting
- Inappropriate height of beds and chairs
- Trailing electric cords
- Not fitting slippers

The etiologies of fall in critically ill patients are specific. The intrinsic factors of the falls in ICU include de-conditioning of patients, which can occur rapidly after ICU admission. Extrinsic factors are related to the fall, which are less with slippery floor or lighting but more with the amount of tubes, cables, or drainage bags attached to patients. The equipment hinders patient's mobility as well as increases their risk of falls. The uniqueness of fall risk factors in the ICU generates unique preventive measures (Patman et al., 2011).

Cases sharing with learning points
One fall incident happened in Tuen Mun Hospital when patient was sat out in chair with no raling and there existed just a mobile bedside table nearby. The patient felt tired, and attempted to return to bed by himself without notifying nurses. With unsteady gait, he eventually fell on the floor. After this incident, a “sit out checklist” was developed to ensure that safety measures had been taken before we sat the patient out of bed (see Appendix 1).

Furthermore, fall incidents usually happened during meal time or during the time when nursing manpower is thin (duty staffs are overloaded with work or being occupied by other patients). Sometimes, inattention or less vigilance of staffs is a risk factor for falls in ICUs. Hence, having safety rounds by designated patrol nurses at regular intervals and during peak hours is highly recommended.

According to the sharing among NSOI sub-committee members, certain brands of split type side rails had been identified as a potential risk item. They did not cover the full length of the bed; patient could easily get out of bed by moving to the end of it. It was proven by one reported incident. NSOI subcommittee members were advised to purchase bed side guard board to fill the gap of the side rail. Nurse executives were recommended to pay more attention to the choice of bed in the future.

Moreover, NSOI sub-committee members also identified that a negative pressure isolation room had the potential risk for fall. Isolation rooms provided a physical barrier and delayed nursing actions. If a nurse noted a dangerous action of patient inside the room, she/he might not be able to approach the patient in time. The need for putting personal protective equipment on before entering the isolation room delayed nurses’ responses. Although no fall incidents inside the isolation room was reported, the risk of fall would be anticipated. Critical care nurses should be on the alert for this potential risk and perform frequent patient rounds when patients are being cared for in the isolation rooms. Overall, critical care nurses are required to identify the unique risk factors for each individual patient and implement timely interventions whenever necessary.

Fall prevention strategies
To prevent falls, an integrated multi-factorial approach is recommended as follows:
- Identify high risk patient through assessment
- Implement interventions to minimize risk of falls
- Monitor the fall rates
- Provide education

The Morse Fall Scale (MFS) is an individualized criterion-referenced assessment tool which is designed for measuring the likelihood of adult patient falls in hospitals. There are a few assessment tools available which are specific to the ICU setting e.g. St. Thomas’s Risk Assessment Tool in Falling Elderly in Patients (STRATIFY); Downton fall risk tool; Tullamore tool; and Tinetti fall risk index.

Most ICUs in Hong Kong adopt the MFS as their fall risk assessment tool. It consists of six variables that are quick and easy to be scored, namely: history of falling; secondary diagnosis; the use of ambulatory aids; intravenous therapy/ intravenous assessment; gait condition; and mental status. Each variable is scored from 0 to 30 marks. If the score is less than 45 marks, the risk level will be defined as “not at risk”. If the score is equal to 45 marks or more, the risk level will be defined as “high”. Risk assessment should be done on admission, then to be repeated on regular interval and whenever condition warrants (i.e. change of health status or after a fall incident). In fact, most of the ICU patient scores are high when using the MFS. The sensitivity of the tool to differentiate the high risk group patients may not be absolutely adequate in critical care setting, so clinical observation and clinical judgment are indispensable in assessing fall risks of ICU patients. Developing new fall risk assessment tool on the uniqueness of critically ill patients should be considered by the critical care nurse to meet their patient care needs as indicated (Flanders et al., 2009).

Interventions (universal or specific) to minimize fall risks
Two levels of preventive measures could be implemented to target fall prevention. Universal fall prevention interventions should be offered to all patients. In addition, specific interventions for high risk groups after professional judgment should be implemented.

Universal fall prevention interventions include:
- Orientate patient to ICU environment and routines
- Provide call bell in reach and educate the using of call bell system
- Respond to patient's call as soon as possible
- Keep the necessary items / frequently used belongings within reach of patient
- Stabilize the bed, sit out chair and bed rail with brakes locked etc.
- Ensure the patient's clothing and footwear are properly fitted when assist the patient to walk about, e.g. roll up the pants to prevent tripping.
- Advise patient to put on appropriate spectacle or hearing aid to improve communication
- Provide pamphlet on falls prevention to patient and relative.
Specific interventions for high risk groups include:

- Make fall risks as part of nurse-to-nurse report (both at shift change and meal break)
- Display fall hazard signage on patient's head of bed for better communication between all healthcare providers
- Relocate agitated patients to easy-observable bed
- Provide constant inspection / ward round by patrol during peak hour such as meal time and admission of emergency cases
- Provide regular assistance for toileting to patients as required
- Educate the patient about his/her risks to fall periodically
- Inform relatives that the patient is at high falls risk
- Manage delirium and postural hypotension
- Optimize falls related medication such as psychoactive and cardiovascular drugs
- Use restraints as last resort and review periodically
- Address identified falls risk to general ward staff when discharge from ICU

Physical restraints

Physical restraints should be used as a last resort since it can be both humiliating and harmful (HAHO, 2016). Critical care nurses should follow hospital guidelines on applying physical restraints on patients and providing appropriate observation and care to the restrained.

The value of applying physical restraints in ICU should be evaluated regularly. As an example, in 2012, Tuen Mun Hospital ICU implemented a quality improvement program on Application of Physical Restraints. The aims of this program were to minimize the inappropriate use of physical restraint, and ensure patients’ dignity and safety.

A scoring tool was established to provide an objective guide for nurses when applying physical restraint. The scoring tool included patient’s behavior and muscle power, the types of medical devices/equipment that the patient had as well as special considerations. Patients are categorized under three color zone according to the total score: Red, Yellow and Green.

- Red zone - restraint should be considered as necessary for the best interest of patients
- Yellow zone - decision of using physical restraint is subjected to nurses’ judgment
- Green zone - restraint should not be applied (see Appendix 2).

Electronic calculation of restraint score has been installed in the Clinical Information System of the hospital to facilitate the implementation. Signage is hung on each bed as a reminder. A clinical audit on the use of the scoring tool was conducted from September 2012 to December 2012. Compliance rates of using the scoring tool and inappropriateness of using restraint were evaluated.

A total of 555 ICU patient episodes were involved in the evaluation. The compliance rate of using the scoring tool was 80%. Approximately, 40% of patients were physically restrained at the time of audit; the prevalence rate was similar to the background rate which was 35% according to the prevalence study. Inappropriateness was much improved, decreasing from 12% to 5% of patient episodes after the project was implemented. A total of 40% of patient episodes were not restrained as they were categorized under the Yellow zone.

The objective scoring system was considered useful to minimize the inappropriate use of physical restraint in ICUs, and it provided autonomy for nurses to make restraint decision. Validation of this scoring system would be considered in our next step of ward improvement action.

Fall rate monitoring and staff education

Ward managers are delegated to report, monitor, analyze the trends, and review the preventive measures periodically (Hong Kong West Cluster: Patient Safety Committee, 2014). Education on falls prevention and management are provided for new staff. It should be included in the preceptorship program and refresher program. All staff should be trained with skills to depict reversible risk factors, identify potential fallers and implement appropriate interventions. In addition, attractive data display boards are recommended to increase staff’s awareness. Fall debriefings should be conducted after each fall incident to establish non-punitive culture for learning and improvement (New Territories West Cluster: Clinical Service/Chairperson of Cluster Clinical Governance Committee, 2018). Staff engagement in fall investigation and sharing the recommendations with staff are successful elements on fall prevention management.

Improvement initiative

As a quality improvement initiative, Physical Restraint Taskforce was established under Specialty Advisory Group (Critical Care) in 2013 to evaluate nursing practice on physical restraint utilization in local ICUs. Physical restraint related data were prospectively collected between January 2015 and December 2015. Total 1805 patients were recruited in the survey period. 731 patients were physically restrained (prevalence rate≈ 40.5%). Patients in restrained group were generally older (p < 0.01), predominantly male (p < .01) and had a lower GCS score (p < 0.01). More restrained patients were receiving invasive mechanical ventilation (p < 0.01), being nursed in isolation room (p = 0.01) or had a past history of fall (p < 0.01) or self-extubation (p < 0.01). No major restraint-associated injury was reported.

According to the survey results, a nursing practice guide on use of physical restraint in intensive care units was finalized in 2017. The guide included recommendations on risk assessment, care process, and system and support. The intent of this guide is to encourage safe and appropriate use of physical restraints in intensive care units. (Specialty Advisory Group: Physical Restraint Taskforce, 2017).

DISPLACEMENT OF TUBES (ENDOTRACHEAL/TRACHEOSTOMY) i.e. UNINTENDED EXTUBATION, LINES AND DRAINS

An unintended incident during which the appropriate marking on the tube inserted is found to be different from the previous observation or previous record, and the primary function of the tube cannot be achieved.

The measure for the rate per 1,000 bed days occupied would be computed as:

- Numerator statement: total number of confirmed unintentional displacement of tubes/lines/drains x1000
- Denominator statement: total number of patient days (bed days occupied) within the period

Country specific exemplar focusing on decreasing displacement of tubes (endotracheal/tracheostomy, i.e. unintended extubation), lines and drains

The majority of the ICUs in Hong Kong are within the public sector. There exists an electronic self-reporting system for reporting incidents in all public hospitals in Hong Kong. In view of the uniqueness of
each ICU, the incident rate may not truly reflect the performance of individual hospitals. However, the result thus generated from 15 Adult ICUs still can serve as a reference when we compare the trend of performance of individual hospital and the aggregated numbers of all hospitals. Basing on the analysis, contributing factors and correlating factors are mapped out and comments and recommendations are summarized for quality improvement purposes.

Content of the reporting form

The self-reporting form (see Appendix 3) includes the patient’s personal particulars; date and time of incident; personnel involved regarding the displacement; description of incident; details about the displaced tube/line/drain; factors contributing to incident; patient outcome; and evaluation.

Background information of the incident includes incident occurred during shift handover or meal break, and/or when patient undergoing nursing procedures like bed bathing, position turning, ambulatory activities, admission and discharge activities, or transportation, medical procedures or other procedures, or when case nurse being occupied by care of another patient, preparation of works or ward round. Patient factors include whether the patient received sedation, was restless, any communication problems, being physically restrained (secured or loosen), and level of cooperation.

The report also includes system and human factors that contribute to the incident. For the system factors, the nurse could select one or more items including poor design or maintenance of device, poor quality of material, poorly secured tube/drain/line, high activity level, below normal staff and patient ratio, inadequate staff training, and inconvenient patient location including those in the side or isolation room. For the human factors, the nurse could choose inadequate patient assessment, incompetent in or unfamiliar with unit protocol or guidelines, distraction, or inattention.

The patient outcome also needs to be reported if the displaced tube/line/drain will require reinsertion and/or re-intubation within 24 hours. The case nurse also evaluates whether the incident is avoidable or unavoidable and recommends any improvement initiatives to avoid the incident happening again. The self-report is reviewed by a shift in-charge or senior nurse to check whether the input data are accurate or not.

Summary of data

Data were collected from 15 hospitals and analyzed for the period from January 2014 through December 2016.

The overall patient bed day occupancy (BDO) increased from 31,631 (2014) to 32,578 (2016) (see Table 1). The total number of displacement slightly increased from 195 to 208 incidents (see Table 2). The total displacement incidents also increased from 6.4 in July to December 2014 (see Table 3) to 7.8. Compared 31,547 BDO in July - December 2014 with 33,040 BDO in January-June 2015. The incidence rate was similar between July-December 2015 and January-June 2016.

However, the total number of displacement had slightly increased especially on drains and the rest remained the same throughout the reviewed period (see Table 4). Displacement of endotracheal tube (ETT) and tracheostomy tube (TT) may have serious life threatening outcomes. It is observed that patients usually received less, or even no, sedation during weaning which further increases their discomfort when they have to cope with their physiological stress of the weaning process.

The nursing strategies may be promoting patient comfort during intubation, better communication between nurse and patient, and nurses staying at the bed-side to decrease the risk of self-extubation.
Displacement of central venous catheter (CVC) and renal replacement vascular accesses (haemodialysis catheter) might cause interruption of life saving therapies. Most of the causes were related to inadequate anchoring of the catheter, e.g. the CVC inserted in operation theatre had frequently no anchoring stitches applied. Therefore, the catheter would easily displace or dislodge. Avoidance of vascular line displacement remains an important focus to address, in particular about the practice of securing the catheters. Displacement of nasogastric tube (NGT) for feeding accounted for high percentages in several reports. The NGT is the most commonly used tube being inserted in ICUs. Usually no anchoring stitch is applied and patients may easily pull it out. Although no life threatening incident that was due to nasogastric feeding tube displacement was recorded, the displacement could contribute to higher risk of aspiration, and the repeated insertions could cause discomfort and injury to patient. It is highly recommended to make an extra effort in securing the NGT, especially when it serves as a drain and is placed intra-operatively. On the other hand, the displacement of thoracic drains may cause potential fatal outcomes such as tension pneumothorax. Therefore, it is highly recommended that individual hospitals should pay attention to the rising trend and focus on prevention of these incidents.

In our experience most of the tube displacements happened during night shifts. However, when the length of shift was taken into account, the incident rate during night shift was nearly the same as day time. While the nurse: patient ratio for night shifts was less in most hospitals in the public system, it was recommended that nurses should make extra efforts to maintain the quality of care during night shifts.

Analysis of incidents

The top three environmental factors contributing to occurrence of incidents (see Table 5) were when nurses were occupied with providing care to other patients, during meal / tea break and during nursing procedures. This implied that patients being less attended to or unattended had a higher risk of displacement of tube/line/drain. These reasons appear to be related to the nurse: patient ratio during night shifts.

Assigning staff as patrol nurses to perform patient safety rounds would be recommended especially during high risk period.

Factors contributing to the incidents

Patient factors

The presence of tube, line and drain might cause great discomfort to patients. Nursing measures were implemented to minimize patient’s discomfort including nurse reassurance, effective communication, and appropriate use of physical restraint. There were many cases when physical restraints were applied and periodic reviews on the effectiveness of restraint were needed. As mentioned earlier in this report, patients with minimal or no sedation during weaning stage were running the risk of having tube/line/drain displacement incident(s). Effective communication between doctors, nurses and the healthcare team members is essential to ensure a balance between appropriate sedation and prevention of displacement incidents.

System factors

The commonest cause of displacement incidents was due to high activity levels. This implied that nurses were occupied by various activities and attention to certain patients could have been diverted. Poorly secured tube/line/drain was the second commonest system factor contributing to displacement incidents. Individual ICUs should continue to work out the best methods to avoid incidents. Patient’s in isolation rooms was the third common system factor. Nevertheless with the increase in awareness of infection control measures, there might be more patients requiring isolation. It was recommended that nurses should be more alert to patients located in isolation rooms.

Patient factors

Artificial airway is a very important life saving device for ICU patients. Among those displacement of ETT and TT, an average of 32% of the related patients required re-intubation. Poorly secured tube/line/drain was the second commonest system factor contributing to displacement incidents. Individual ICUs should pay special attention to their own incidents and implement appropriate preventive measures to prevent tube displacement. Findings from January 2014 to December 2016 (see Table 6) showed no significant differences in the requirement of reinsertion of line or drain after displacement.

Table 5. Tube displacement correlation with other activities occupying nurse’s attention

The presence of the ICU nurse was a crucial factor in prevention of tube displacement incidents. It would be necessary to adjust the manpower arrangement during meal time or tea breaks because it was found that during shift hand-over and meal/tea break, patients were prone to have tube/line/drain displacement. In addition, arrangement of work to perform non-urgent labour intensive activities should be done only when there was adequate manpower. Around average 42% half year of tube/line/drain displacement incidents occurred during nurses occupied by other patients. It is recommended that nurses should be more alert to maintain all tubes, lines and drains during procedures to prevent displacement.

Table 6. Reintubation (ETT) and reinsertion (TT) rates in source ICUs

Conclusion

The overall ICU displacement incidents were similar in contrast with the increasing bed days occupied, which reflected that the current measures in preventing displacement incidents among various hospitals were effective. It requires a multi-disciplinary approach in preventing displacement incidents. Effective communication among doctors, nurses and health care assistants is essential. Identifying...
patients at risk, time at risk can help to initiate proactive measures to prevent line/tube displacement.

Recommendations

It was found that the types of tube displacement with high incidence rates over the period of two years (2015 to 2016) were endotracheal tubes and nasogastric tubes. Frequent reminders and explanation to patients about the importance of the tubes could help to prevent self-extubation. Debriefing of the incidents to all frontline staff to aware their alertness in the prevention of displacement of life supporting devices especially for patient in side ward or isolation room. Staff should be on the alert for restless and uncooperative patients during duty handover. Before leaving the at-risk patients, nurses should ensure that all life supporting devices are properly secured and, if necessary make arrangement for supporting staff to actively monitor patients.

Appropriate staff deployment could minimize the occurrence of incidents. Nurses should be encouraged to call for help when they are expected to be occupied for a long period of time. Reassurance and promotion of comfort could help to gain the cooperation from patients.

Senior nurses should remind staff to hold tubes, lines and drains carefully and stay alert when they are repositioning patients and/or equipment.

Reviewing major incidents, especially the avoidable cases, could raise staff awareness. Posting of the incident numbers and trends in the working area can remind and enhance staff alertness. Heightened staff awareness coupled with caring attitude is essential to minimizing displacement incidents.

The way forward

It is proposed to enhance communication between doctors and nurses during weaning stages for sedation control, and the appropriate time for extubation. With an aim to shorten patient’s length of stay in ICU, trials on nurse initiated extubation in weaning patients from ventilators may be able to minimize displacement incidents. Furthermore, proper use of sedation scoring scales could minimize patients’ discomfort. Periodic patient safety rounds are a pro-active measure to identify patients at risk of incidental displacement so that prompt preventive measures can be implemented. Briefing and debriefing on post displacement incidents are encouraged so as to have the cases reviewed and good practices shared in order to achieve better patient outcomes. Near-displaced incidents should be mentioned to colleagues to prevent displacement to happen on the same patients again. It is invaluable to continue having this self-reporting system of displacement incidents with a blame-free or no blame culture.

MEDICATION ERRORS IN THE ICU

Medication error (ME) and medication incident (MI)

The National Coordinating Council for Medication Error Reporting and Prevention (2009) defined a medication error as:

- any preventable event that may cause or lead to inappropriate medication use or patient harm while the medication is in the control of health care professional, patient, or consumer.
- Such events may be related to professional practice, health care products, procedures, and systems.

Another extensive review of medication safety in the ICU by Kane-Gill et al. (2006) defined medication errors as:

- preventable mistakes or a deviation in planned action.

Medication errors are major issues in the health care setting and particularly prevalent in highly technical specialty areas such as the ICU. Medication incident (MI) which stresses the quality processes of the drug administration, is now used in modern literature. Medication incidents include errors in prescribing, dispensing and drug administrations. The incidents may be patient involved or non-patient-involved.

Instruments measuring medication incidents in ICU

The measure for the medication incident rate per 1,000 bed days occupied would be computed as:

- **Numerator statement:** total number of medication incident occurred x1000
- **Denominator statement:** total number of patient days during the period (total number of bed days occupied).

Medication incidents in ICU

Critically ill patients receive nearly twice as many medications as patients in general care units, and as a result, are at risk for a potentially life-threatening error during their hospital stay (Eric 2008). According to Kane-gill, Jacobi and Rothschild (2010), medication errors happened more frequent in ICU with a greater likelihood of harm in ICU patients, whereas the chance of mortality is approximately a 2.5 times higher in ICU. In adult ICU, the median frequency of medication errors is 106 per 1000 patient days.

Patients in the ICU are at higher risk for adverse drug events for many reasons. These include illness severity, complexity of care, frequent use of complex drug regimens, high-alert medications, and the need for frequent drug dosing. Additionally, the busy environment, heavy workload and frequent stressful situation for the staff can predispose the ICU setting to having a greater incidence of medication errors (Vos, et al., 2007).

Data reporting

Medication error (ME) in ICU can place patients at risk of injury or death. It is essential to minimize and prevent the incidence of medication errors, hence offering the best protection to our patients. A comprehensive data collection system with the aim to establish a database on medication errors which includes all error reports related to medication use in the prescribing, administration, dispensing and preparation is needed.

The Advanced Incident Reporting System (AIRS) was used in public hospitals in Hong Kong for reporting all incidents including medication incidents. AIRS is a web-based electronic system serving as a tool to support risk management by facilitating the reporting, classification, analysis, management of incidents and marking improvement. The report includes the following information: patient information, the location and time of the incident, a description of what happened and what was done about it, the condition of the patient, the event outcome, severity index describing patient outcomes following medication errors, as in Table 7, and any additional information required by the facility policy.

A comprehensive medication incident form is essential for the data collection and for root cause analysis to evaluate the factors and prevention measures for improvement in medical safety, such as Appendix 4.
Types and causes of medication errors

Possible medication errors may arise during any of these steps. The types of medication errors can be grouped under three key processes:

Prescribing
- wrong drug
- wrong dosage form
- wrong strength/dosage
- wrong duration
- wrong frequency
- wrong route
- wrong abbreviation
- wrong instruction
- wrong patient
- double entry
- drug omission
- known drug allergy

Dispensing
- wrong drug
- wrong dosage form
- wrong strength/dosage
- wrong quantity
- known drug allergy
- wrong patient
- wrong label information
- double dispensing
- drug omission

Administration processes
- wrong drug
- wrong dosage form
- wrong dose
- wrong flow rate
- wrong patient
- wrong route/method
- wrong iv diluent
- wrong time
- extra dose
- dose omission
- unordered drug
- known drug allergy

In a large-scale cross-sectional study in the United States, the types and causes of the medication errors between ICU and non-ICU setting were compared (Latif, et al., 2003). It was revealed that medication errors often originated in the administration phase (ICU 44% versus non-ICU 33%). The most common error type was omission (ICU 26% vs. non-ICU 28%).

Among harmful errors, dispensing devices (ICU 14% versus non-ICU 7.1%) and calculation mistakes (ICU 9.8% vs. non-ICU 5.3%) were more commonly identified.

Local data on medication incidents

In Hong Kong, similar trends in medication incidents were observed. In 2016, it was reported that the medication errors were also often originated in the administration phase (see Table 8) (Hospital Authority, 2018).

According to the annual report on sentinel and serious untoward events published by Hospital Authority (2018), the top three common category of drugs involved in the medication errors were “known drug allergen”, “dangerous drug” and “anticoagulant” (see Figure 1). Medications such as insulin, inotropes and oral hypoglycaemic agents were also commonly involved in medication incidents.

Among the medication incidents related to known drug allergen, the three most commonly involved drug allergen were penicillin-related medications, non-steroidal anti-inflammatory drugs and paracetamol.
Physicians have the responsibility to write orders for medications and prescribe medications. At this vital first step, errors can occur in various ways, for instance, illegibility of orders, incomplete orders, incorrect doses, inappropriate doses for narrow therapeutic range for liver or kidney function, failure to verify allergies, and failure to reconcile medications leading to omitted medications or extra doses of medications (Bohomol, 2009; Frith, 2013).

In a study of prescribing errors. 7.53 errors per 1000 prescriptions were identified (Jayawardena, 2007). Research explored the effect of perceived stress; caseload, perceived workload, and hours of sleep of physician on medication errors (Eric et al., 2008). Clinicians should understand the reasons for medication errors from a human factor perspective.

Health care professionals

However, little attention has been paid to the feelings of health care professionals involved in the incidents. They may experience uncomfortable feelings of personal vulnerability and professional fallibility; guilt, panic, remorse, self-doubt, and self-blame (Porter 2014). Some may be fearful about the safety of their patients and about disciplinary actions and punishment for their mistakes; fear malpractice lawsuits and possible criminal charges if a fatal incident occurs (Eric et al., 2008). They may even have feelings of doubt about their professional abilities. Healthcare personnel involved in an incident can benefit from psychological support which can create an environment that fosters open and honest discussion about errors.

Nurses

Fears of negative consequences can be a major obstacle to accurate reporting of errors, with as many as 50% to 96% underreported. How nurses choose to respond to the occurrence of a medication error is recognized as an ethical imperative (Gallagher, 2008). It is not an easy action to divulge medication errors. Nurses are still expected to provide responsible care and be fully accountable within their scope of practice. When medication errors are discovered, nurses have moral obligations of accountability and responsibility to account for the mistakes with disclosure (Porter, 2014). It is also an opportunity to practice virtuous characteristics, particularly honesty and trustworthiness.

Research has demonstrated that four factors affect nurses’ willingness to respond to an ethical dilemma or question, such as whether to report a medication error; ethics knowledge, clinical expertise, concern for ethical issues, and nurses’ perceived level of influence in their unit (Hamric, 1999). There are several strategies for ethical responses surrounding medication errors in ICU (Porter 2014):

- Be accountable to yourself and your coworkers
- Admit when medication errors occur
- Resist the culture of Name, Blame, and Shame
- Avoid workarounds in medication management processes.

Whenever a patient has experienced an iatrogenic injury, disclosure of the incident should take place and should be guided by the following principles (Camiré 2009):

- Perform in a timely fashion – as soon as possible after the injury, while ensuring the patient’s well-being
- Perform in a quiet room free of interruptions
- Disclose facts without speculation, opinion or blame
- Use simple, unambiguous lay words
- Include an expression of sympathy
- Allow time for questions
- Document disclosure in the medical record.

Physicians

Physicians have the responsibility to write orders for medications and prescribe medications. At this vital first step, errors can occur...
published by American College of Critical Care Medicine (Kane-Gill et al., 2017) and some recommendations to improve safe medication use in critical care setting were extracted and listed as below (Tables 10 and 11).

Nurses often act as ‘the last gatekeeper’ in the process of medication administration. However, interruptions during medication administration process can range from questions from other colleagues, patients, families; monitors, alarms, and pagers to patient activity (Academic Medical Center, 2012).

ICU nurses also play crucial roles in setting strategic goals for medication safety and help in executing those goals and maintaining safety culture in hospital. Some more essential practice strategies (Frith, 2013) and preventive measures which could improve medication safety in ICU were listed in the table below (see Table 6, 7 and 8).

Patient and family satisfaction in the ICU

Promoting patient and family satisfaction with care is a key component of providing quality care in the ICU (de-la-Cueva-Ariza et al., 2013). Traditionally, the goal of intensive care nursing has primarily focused on the physiological and psychological impact of life-threatening illnesses on individual patients. By incorporating the concept of patient to include the family, the critically ill patient’s well-being can be improved (Lee, Chien, & Machenzie, 2000). For that reason, both patient and family experience is important for patient- and family-centered care in the ICU.

Patient and family satisfaction has become an acknowledged quality metric in the ICU. A number of studies have been conducted internationally which focus on improving the patient experience in the ICU. A pilot study was conducted in a mixed adult ICU in Netherland using a self-developed questionnaire which included 60 questions in eight domains (General satisfaction, Reception, Physical care, Mental care, Empathy and attention, Communication and information, Surroundings and Physical discomfort) to measure the level of patient satisfaction and to identify its influencing factors on ICU patients. Ninety-eight patients were interviewed. The mean overall patient satisfaction score was 4.60 out of 5. Communication and information emerged to be significant in predicting general patient satisfaction (Lee, Chien, & Machenzie, 2000). For that reason, both patient and family experience is important for patient- and family-centered care in the ICU.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Recommendations</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Changes in the culture of safety (non-punitive environment and improve reporting system)</td>
<td>Less time-consuming in reporting system, Increased reporting rate of medication errors</td>
</tr>
<tr>
<td>2</td>
<td>Initiate education intervention (simulation training, multidisciplinary involvement, active engagement of staff, work standardization)</td>
<td>Change in behavior and associated outcome</td>
</tr>
<tr>
<td>3</td>
<td>Implement hospital-wide Computer Providing Order Entry (CPOE) system</td>
<td>Help in the completeness of the prescription. Decreased omission errors compared with hand-written orders (Maat et al., 2014)</td>
</tr>
<tr>
<td>4</td>
<td>Use of clinical decision support system (CDSS) including drug allergy checking, basic dosing guidance, formulary decision support, duplicate therapy checking, and drug–drug interaction checking (Kuperman et al., 2007).</td>
<td>Decrease the number of medication errors. Provide instant, accurate and reliable electronic order communication & was more legible than hand-written orders</td>
</tr>
<tr>
<td>5</td>
<td>Use of evidence-based protocols/bundles such as insulin protocol</td>
<td>Promote safe practice and decrease variability of medications prescription among prescribers and reduce MEs</td>
</tr>
<tr>
<td>6</td>
<td>Use of medication labeling practice using tall man (uppercase) letters such as DOBUTamine and Dopamine instead of Debutamine and dopamine</td>
<td>Help to visually differentiate look-alike drug names</td>
</tr>
<tr>
<td>7</td>
<td>Comply with safe medication concentration practice using of premade IV preparation such as parenteral products</td>
<td>Reduce incorrect calculations. Erroneously prepared concentrations, wrong diluents, improper labeling and expiration dates when in manual preparation (Kane-Gill et al., 2017)</td>
</tr>
<tr>
<td>8</td>
<td>Use of smart IV infusion pump with use dose error reduction software (dose libraries) and displayed drug name</td>
<td>Reduce rate of MEs. Assist the frontline nurses to select appropriate programmed medication, and calculate both the dose and delivery rates (Trbovich et al., 2010)</td>
</tr>
</tbody>
</table>

Table 9. Potential risk factors for medication errors in ICU (Moyen, et al., 2008)

Table 10. Grade of Recommendation Assessment, Development, and Evaluation (GRADE) system (Kane-Gill et al., 2017)

Table 11. Recommendation guidelines of preventive measures (Kane-Gill et al., 2017)
Patient satisfaction has been associated with nursing work environment. Boev (2011) used a 26-item instrument to measure level of satisfaction of critically ill patients with care and to examine the relationship between nurses’ perception of work environment and patient satisfaction in four adult ICUs in United State. The results showed that overall quality of nursing had the highest score (4.5 out of 5), followed by nurses’ friendliness (4.4 out of 5), and patient’s satisfaction of pain control (4.4 out of 5). Critically ill patient’s satisfaction with preparation for ICU discharge had the lowest scores (4.1 out of 5). Intensive care nurses reported moderate satisfaction with work environment, with perception of the role of their nurse manager having a strong influence on satisfaction scores. Perception of nurse manager leadership and capability was significantly associated with patient satisfaction. The relationship between nurses’ perception of their nurse manager and overall patient satisfaction suggests hospitals should consider putting more resources in nursing work environment improvement and nursing leadership empowerment.

However, conducting patient satisfaction surveys in the ICU can be challenging. Apart from whether critically ill patients can consciously recall their stay in the ICU, and have the ability to judge quality of health care service, the timing to perform the survey is another major issue. Most patient satisfaction surveys are conducted upon patient discharge and reflect the care they received from the unit from which they were discharged. Rarely are patients directly discharged to home from the ICU, and obtaining information related to patient satisfaction with ICU nursing care is therefore limited (Stricker et al., 2011).

Additionally, there are a lack of validated instruments to evaluate patient satisfaction with care in the ICU and the absence of standardized instruments make benchmarking of patient satisfaction data difficult (De-la-Cueva-Ariza et al., 2013).

Instruments measuring family satisfaction

Studies demonstrate that if a critically ill patient is unable to rate satisfaction with care in the ICU, family members can be taken as
appropriate surrogates (Stricker et al. 2011). Therefore, various assessment tools had been developed to evaluate family's satisfaction in ICU (Heyland & Tranmer, 2001; Wasser et al., 2001). A search of literature had shown that there are at least three assessment tools commonly used in ICU to measure the level of family satisfaction.

Family satisfaction in intensive care unit (FS-ICU)

The FS-ICU-34 was developed by Heyland and Tranmer (2001). It was designed to measure the family satisfaction with care provided in the ICU. The origin FS-ICU consists of 34 items, it was conceptualized into two domains: satisfaction with overall care (18 items), and satisfaction with decision making (16 items). Content validity, clarity and readability had been tested. Cronbach’s alpha (internal consistency) ranged from 0.74 to 0.95, and test and retest reliability was 0.85 (Heyland & Tranmer, 2001).

The FS-ICU-34 was further refined and validated by Wall and his colleagues (2007), and became shortened FS-ICU-24. Shortened FS-ICU-24 consists of 24 items, measuring two domains as well: “Satisfaction with Care” (14 items) and Satisfaction with Decision Making (10 items). The Cronbach’s alpha score were 0.92 and 0.88 for the satisfaction with Care and the Satisfaction with Decision Making respectively. The two subscales showed good correlation with each other (Spearman’s 0.73, p < 0.001) which “suggesting that a single scale for the entire instrument was reasonable” (Wall et al., 2007, p.275). In validity testing, the FS-ICU-24 was significantly correlated with the Family-Quality of Dying and Death (Family-QODD) questionnaire total score (Spearman’s 0.56, p < 0.001) (Wall et al., 2007).

The FS-ICU has been translated and validated for cross-cultural use. To date, it had been translated into French, Chinese, Portuguese, Hebrew, Spanish and Swedish (Canadian Association of Research at the End of Life network, n.d.) as it is a valid and reliable tool for assessing family satisfaction in the ICU. The Pamela Youle Nethersole Eastern hospital in Hong Kong currently adopts FS-ICU-24 as an instrument to measure the family satisfaction of care in ICU.

Critical Care Family Need Inventory (CCFNI)

The CCFNI is a 46-item, 4-point Likert-type questionnaire with 45 specific items and an open-ended item to identify a need that was not listed on the questionnaire. The CCFNI was developed and modified from Molter’s (1979) instrument by Leske in 1986 (Lee & Lau, 2002). Construct validity and internal consistency of CCFNI were examined by Leske (1991), and were established by performing factor analysis. Five dimensions of CCFNI were identified, and were labeled as need for support, comfort, information, closeness and reassurance (Leske, 1991). The internal consistency alpha coefficient of the total CCFNI was 0.92, and the Cronbach’s alphas of five dimensions were between 0.61 and 0.88. This indicated that CCFNI had acceptable internal consistency.

The CCFNI has been widely used in studies and in different cultures in large scale studies (Azoulay et al., 2001; Damghi et al., 2008; Wilson et al., 1998). It has been translated into Arabic (Damghii et al., 2008), Spanish (Gomez-Martinez et al., 2011), Chinese (Wong, 1995). According to the systematic review by van den Broek (2018), CCFNI and FS-ICU were the most reliable and valid questionnaires in relation to their psychometric properties.

Critical Care Family Satisfaction Survey (CCFSS)

The CCFSS was developed and validated by Wasser et al. (2001). They believed that it is important to include all dimensions of care when evaluating family satisfaction with care provided in ICU. The CCFSS consists of 20 items; it is used to measure family satisfaction with overall care in ICU. The content and construct validity were examined by Wasser and colleagues (2001), support that the CCFSS was reliable and valid; the Cronbach's alpha score was 0.93 for the 4-factor model, and 0.91 for 5-factor model. The CCFSS has five subscales: assurance (the need to feel hope for a desired outcome), information (the need for consistent, realistic and timely information), proximity (the need for personal contact and to be physically and emotionally near patient), support (the need for resources, support system, and ventilation), comfort (the need for personal comfort). Subscale correlation were not lower than 0.75 for the five-factor model and 0.856 for the four-factor model (Wasser et al., 2001).

Clinical exemplar: family satisfaction in Hong Kong ICU

Reporting family members' feedback and satisfaction of care is a key domain to provide transparency and improve the overall quality of intensive care. Three quantitative studies were identified using the CCFNI and FS-ICU to investigate the needs and satisfaction of family members of critically ill patients in Hong Kong.

Lee et al. (2000) conducted a descriptive study consisting of 30 family members who had a relative admitted to a Hong Kong ICU to explore their needs and their perception of having their needs met. Among the five need categories, reassurance and information were the most important categories. The five most important family needs were 'to know the expected outcome', 'to be assured that the best care possible is being given to the patient', 'to know specific facts concerning the patient's progress', 'to have explanations given that are understandable' and 'to see the patient frequently'. Over 80% of family members perceived nurses as the most appropriate persons to meet the family needs. Additionally, the five family needs that could be best met by nurses were 'to talk to same nurse everyday', 'to be called at home about changes in the patient's condition', 'to receive information about the patient at least once a day', 'to have directions as to what to do at the bedside' and 'to help with the patient's physical care'. The study identified that female family members had higher ratings in the unmet need scores and the 5 highest ranking of the unmet needs included 'to talk to the doctor daily', 'to visit any time', 'to help with the patient's physical care', 'to feel it is alright to cry' and 'to talk about negative feelings such as guilt or anger'.

Another similar descriptive study was carried out in Hong Kong to investigate the needs of family members of ICU patients and to measure the extent of needs being met. The study recruited 40 adult family members of critically ill patients using convenience sampling methods. The mean scores of five need categories ranged from 2.5 to 3.7 (possible range 1-4). The reassurance category was ranked as the most important then followed by closeness, information, comfort and support category. More than half (58.4%) of the family members of critically ill patients replied that their needs were met. The top 5 needs that were met most were 'to know the expected outcome' (95.0%), 'to have friends nearby for support' (95.0%), 'to be assured that the best care possible is being given to the patient' (95.0%), 'to feel that hospital personnel care about the patient' (94.9%) and 'to have visiting hours start on time' (92.5%) and they were met by nurses and doctors. Needs of the reassurance category were met most (86.7%), then the closeness (61.6%), information (56.8%), support (54.7%) and comfort (35.4%) categories. Nine out of 10 needs that were met most were perceived as important which implies the health care providers satisfactorily fulfilled family members' needs. On the other hand, the top 5 needs were met least were 'to have comfortable furniture in the waiting room' (12.5%), 'to have a toilet near the waiting room' (12.5%), 'to have good food available in the hospital' (18.7%), 'to have the waiting room near the patient' (22.5%) and 'to visit at any time' (25%). (Lee & Lau, 2003).
of Critical Care Nurses (HKACCN) conducted a pilot study in 2004 to examine both patient and family satisfaction with nursing care in 3 Hong Kong ICUs. 30 samples from patients and 30 samples from family members of ICU patients were recruited. Patients who are unconscious; with legal implication and stayed in ICU less than 48 hours were excluded in the study. ICU patient and family satisfaction questionnaires were developed and validated by expert panel.

HKACCN (2004) found that:

- Higher percentage of graduate nurses showed a positive effect on patient/ patient’s family satisfaction about the nursing care they received (p = 0.03) / (p = 0.01)
- Higher percentage of nurses with formal ICU training showed significant effect on patient/ patient’s family satisfaction about the nurses’ performance (p = 0.00) / (p = 0.05).
- *Higher nurse:patient ratio showed significant effect on patient/ patient’s family satisfaction about the nurses’ performance (p = 0.00) / (p = 0.07).

Kosco and Warren, (2000) found that, “The less experienced nurses may not be as prepared to deal with the needs of family members, as nurses with more education may have more experience with communication skills and may find it easier to keep the family members informed of the condition of their loved ones.”

Though small sample sizes and or single center setting limited the generalizability of the aforementioned studies, they highlight areas such as providing psychological support, giving information to update patient’s progress, allowing being close to the patient and having comfortable hospital environment and facilities, deserve more attention by Hong Kong ICU nurses in an attempt to raise the satisfaction with needs met of the family members of critically ill patients.

Recently, there was a survey to investigate the level of family satisfaction and to determine the factors independently associated with higher family satisfaction was conducted by Lam et al. (2015) in the Department of Intensive Care of Pamela Youde Nethersol Eastern Hospital in Hong Kong. The response rate was 76.6% (736 questionnaires were collected from 961 eligible families). The total satisfaction score was 78.1 ± 14.3 (mean ± standard deviation) and the total satisfaction score with role in decision-making was 78.6 ± 13.6.

The results were similar to overseas findings. Concern for patients and families; agitation management; family’s interaction with ward staff; impression about doctors; facilities and the intensive care unit environment were identified as independent factors associated with complete satisfaction with the overall care. This survey has highlighted that the intensive care unit environment, communication with families and agitation management are the areas for improvement.

Interventions to enhance family satisfaction with ICU care

Family needs assessment

To enhance satisfaction level of family members of critically ill patients, family-centered care should be adopted in the ICU. Family-centered care is an approach to care that recognizes the needs of patient’s family members plus the essential role that family members take part in during patient’s illness (Henneman & Cardin, 2002). Studies have identified the incongruence in the perception on the importance of family needs between families members and nurses (Lee et al., 2000; Maxwell et al., 2007). It is beneficial for ICU nurses to assess the perception of family needs from a multidisciplinary care perspective, and to ensure that the plan of care is truly family care based (Henneman & Cardin, 2002). Therefore, strategies to improve family satisfaction on information needs and assurance & support needs as well as proximal needs are suggested for consideration.
Nursing Sensitive Outcome Indicators

Strategies to improve family satisfaction on proximity needs

Regarding family visitation, studies have demonstrated that patients wish to have their family visit more frequently and families want visiting hours to be more flexible, highlighting that restrictive visitation may not fulfill families need to be close to critically ill patients (Halm & Titter, 1990; Roland et al., 2001).

A systematic review has identified that flexible visiting policies were associated with family members' greater satisfaction and have the potential to reduce delirium and anxiety symptoms among patients (Nassar Junior et al., 2018). Yet globally, flexible open visitation is not a standard of care in the ICU. The American College of Critical Care recommends that the patient, family and nurse determine visiting schedule collectively and advocates for open visitation in adult ICU based on case by case (Judy et al., 2007).

Lee (2009) performed a quasi-experimental study in a Hong Kong ICU to investigate the effects of contract visitation on the satisfaction level of meeting families' needs. Families in the intervention group followed a contractual visiting practice that permitted an individualized approach to family visits while the control group was subjected to the usual restrictive practice. The results showed that families of intervention group had significantly higher satisfaction score in proximity and support need attainment.

In summary, promoting patient and family satisfaction is a NSOI that is used on an international basis to improve the quality of care provided in the ICU. Sharing global strategies for promoting patient and family satisfaction can help to enhance the ICU experience for patients, families and ICU caregivers. Internationally, nurses play an important role in promoting patient and family satisfaction with ICU care. Dissemination of specific strategies that have resulted in improved ICU care such as open visitation, family presence on rounds, family presence during resuscitation or invasive procedures, and other initiatives including music therapy or pet visitation in the ICU can help to promote optimal care for patients and families in the ICU (Society of Critical Care Medicine, 2015).

CHECK YOUR PROGRESS

Assess your understanding of key points from this chapter.

1. Which of the following is a nurse sensitive outcome indicator?
 a. Nursing turnover rates
 b. Nursing job satisfaction rates
 c. Peripheral catheter insertion rates
 d. Pressure injury rates.

2. True or False: An anticipated physiologic fall is associated with intrinsic factors such as aging, altered mental state, unsteady gait and sensory deficits, which can be prevented by specific interventions after assessment.

3. Which of the following is considered an extrinsic factor related to falls in the ICU?
 a. Patient age
 b. Patient mobility level
 c. Patient de-conditioning
 d. ICU equipment including tubes, or drainage bags.

4. System factors contributing to the displacement of tubes, lines and drains in the ICU include all of the following except which factor?
 a. Poorly secured tube/drain/line
 b. Staff to patient ratio
 c. Patient room location in the ICU
 d. Patient positioning.

5. According to the yearly report published by Hospital Authority in Hong Kong, which is NOT the commonly involved medication in medication incident?
 a. Anti-hypertensives
 b. Known drug allergens
 c. Anticoagulants
 d. Dangerous drugs.

6. Which of the following is NOT proved useful in improving medication safety in ICU?
 a. Using computer provider order entry
 b. Using clinical decision support system
 c. Manual preparation of all parenteral infusions by bedside nurses
 d. Tall-man lettering in labelling look-alike medications.

7. Medication procedures in the ICU can be broken down into steps from drug prescription, transcription, dispensing, and administration procedures. How many steps have been identified in the total process?
 a. 10
 b. 20
 c. 30
 d. 40.

8. Which of the following is NOT an appropriate ethical response to medication error management?
 a. Be accountable to yourself and your coworkers
 b. Admit when medication errors occur
 c. Name, Blame, and Shame those who make serious errors.
 d. Avoid workarounds in medication management processes.

9. True or False: Globally, flexible open visitation is a standard of care in the ICU

10. True or False: Female family members may feel the need to express grief and anger over the plight of their loved one in ICU

11. Patients falls are most accurately measured using the following units:
 a. Falls per 1000 occupied bed days
 b. Average falls per admitted patient, excluding ICU
 c. Total falls that resulted in an ICU admission
 d. Falls per total bed capacity.

12. The HKACCN study of patient and family satisfaction with nursing care in 3 Hong Kong ICUs should that all of the following improved satisfaction with care except?
 a. High percentage of graduate nurses
 b. High percentage of nurses with formal ICU training
 c. High percentage of male nurses
 d. High nurse: patient ratios.
Nursing Sensitive Outcome Indicators

Answers
1. d
2. True
3. d
4. d
5. a
6. c
7. d
8. c
9. False
10. True
11. a
12. c.

ACKNOWLEDGEMENT
The contributions of S L Tang, Wilson Lo, Ruby Wong, Tacko Tsoi, Margaret Lee, Jasmine Mak, and Tracy Fung are acknowledged.

REFERENCES
Centre for Health Protection (2005). Recommendations on Hospital Infection Control System in Hong Kong Scientific Committee on Infection Control, Department of Health.

134

Van den Broek JM, Brunsveid-Reinders AH, Zedlitz AM et al. (2015). Questionnaires on family satisfaction in the adult ICU: A systematic review including psychometric properties. Critical Care Medicine 43(8), 1731-44.

Please read before and sign after the sit out procedure by case in-charge nurse

<table>
<thead>
<tr>
<th>Behaviors</th>
<th>Yes/No/NA</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Assess patient general condition whether he/she is fit for sit out with agreement of physician</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Adjust bed in the lower position with brakes locked, so that it is safer for the patient to sit on and sit out of bed</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Educate the patient to move slowly from a lying to sitting or standing position to minimize dizziness and falls due to postural hypotension</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Provide appropriate and adequate assistance for transfer</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Accommodate the patient near the bed and within eyesight of nurses for more easy observation and detection of risk</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ensures the wheels of sit out chair are locked</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ensure all IV lines, drains and catheters in proper position and secure well</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Educate the patient to stay in chair until helper arrives</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Observe the patient's vital signs and stay with the patient until condition stable</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Reinforce calling for assistance</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Arrange patient’s belongings and call bell within reach</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Provide scope for diversional activities</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Re-orientate patient frequently</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Educate patient not to climb out of chair or ambulate alone</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Respond to patient’s needs promptly</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Invite relatives to stay with the patient if needed, especially for patients with dementia or confusion</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Apply safety vests and/or limb holder if necessary</td>
<td></td>
</tr>
</tbody>
</table>

For safety vests and/or limb holder(s) applied:

18	Ensure the safety vests and/or limb holder is in the proper position and functioning well
19	Explain the need for restraint to the patient and gain his/her cooperation
20	Perform close observation of patient after applying restraint equipment and document properly
21	Inform physician of reasons for restraint
22	Inform relatives/significant others as soon as possible

Name of nurse: _____________________________ Signature: _____________________________ Date: ________ Time: ________

Appendix 1. ICU checklist for sitting patient out of bed (from: Tuen Mun Hospital, Hong Kong)

Appendix 2. The grading and scoring system for applying restraint in ICU (Tuen Mun Hospital, Hong Kong)

<table>
<thead>
<tr>
<th>Code Green (not suggested to apply restraint)</th>
<th>Code Yellow (subject to nurse’s decision, merely restraint for the best interest of patient care)</th>
</tr>
</thead>
<tbody>
<tr>
<td>When: Score < 8</td>
<td>Suggested action:</td>
</tr>
<tr>
<td></td>
<td>1. Physical restraint suggested</td>
</tr>
<tr>
<td></td>
<td>Score 6-12: Try mitten with red/without red</td>
</tr>
<tr>
<td></td>
<td>+ Safety vest</td>
</tr>
<tr>
<td></td>
<td>Score 12-15: Try limb holder - mitten with red/without red</td>
</tr>
<tr>
<td></td>
<td>+ Safety vest</td>
</tr>
<tr>
<td>2. Exclude reversible cause</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Kyle repositioning</td>
</tr>
<tr>
<td></td>
<td>b. Bed opening</td>
</tr>
<tr>
<td></td>
<td>c. Check GEM for Na, K, CO₂ & Htx</td>
</tr>
<tr>
<td></td>
<td>d. Pain assessment</td>
</tr>
<tr>
<td></td>
<td>+ Inform MO if needed</td>
</tr>
<tr>
<td></td>
<td>3. Consider to use communication board</td>
</tr>
<tr>
<td></td>
<td>4. Consider to off restraint intermittently if condition feasible</td>
</tr>
<tr>
<td></td>
<td>Code Red (Strongly suggested to apply restraint until MOAC assessment)</td>
</tr>
<tr>
<td></td>
<td>Suggested action:</td>
</tr>
<tr>
<td></td>
<td>1. No or only visible sign of muscle contraction only</td>
</tr>
<tr>
<td></td>
<td>2. Insufficient muscle power to overcome gravity</td>
</tr>
<tr>
<td></td>
<td>3. Insufficient muscle power to overcome gravity</td>
</tr>
<tr>
<td></td>
<td>4. Full muscle power</td>
</tr>
<tr>
<td></td>
<td>D. Other Conditions</td>
</tr>
</tbody>
</table>

Appendix 2. The grading and scoring system for applying restraint in ICU (Tuen Mun Hospital, Hong Kong)
Appendix 3. Self-report form
Nursing Sensitive Outcome Indicators

<table>
<thead>
<tr>
<th>Date:</th>
<th>Duty shift: ☐ AM ☐ PM ☐ N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case nurse</td>
<td>Error identified</td>
</tr>
<tr>
<td>Residents involved</td>
<td></td>
</tr>
</tbody>
</table>

Prescribing
- wrong drug
- wrong dosage form
- wrong strength/dosage
- wrong duration
- wrong frequency
- wrong route
- wrong abbreviation
- wrong instruction
- wrong patient
- double entry
- drug omission
- known drug allergy

Dispensing
- wrong drug
- wrong dosage form
- wrong strength/dosage
- wrong quantity
- known drug allergy
- wrong drug
- wrong dosage form
- wrong strength/dosage
- wrong quantity
- known drug allergy
- wrong patient
- wrong label information
- double dispensing
- drug omission

Administration
- wrong drug
- wrong dosage form
- wrong strength/dosage
- wrong route/method
- wrong iv diluent
- wrong time
- extra dose
- dose omission
- unordered drug
- known drug allergy

Support Worker/Coordinator to complete – Incident Analysis

- ☐ Incorrect client
- ☐ Incorrect medicine
- ☐ Incorrect dose
- ☐ Incorrect route
- ☐ Split or dropped medicine
- ☐ Out of date medicine
- ☐ Missing medicine
- ☐ Lack of documentation such as assessment, medication order, medication support plan, medication record sheet (if required)

Coordinator to complete - Incident Analysis Conclusions

- When, if anything could have prevented the incident? Describe:
- Was the incident related to a procedure breakdown (staffs focus)? ☐ Yes ☐ No
- Was the incident related to the medication management system (prescription, supply, documentation focus)? ☐ Yes ☐ No
- Was the immediate action taken appropriate? ☐ Yes ☐ No

Coordinator to Complete – Closure

- Outcome or end result: (tick applicable boxes)
 - ☐ Issue resolved – no improvements implemented
 - ☐ Improvement implemented (describe):
- Closed Out/Complete:

- Coordinator’s Signature: Date: